283 Fort Bridgeman Road #2, Vernon, VT 05354

phone (802) 257-7383 fax (802) 257-7308

Townshend STP SCTT (1) Item 900.645 – SP Rehabilitating Covered Bridge Superstructure

Re-cambering

The bridge will be cambered evenly through the bridge. At each shoring needle beam the bridge will be lifted. When the bridge is at a consistent starting elevation the cambering jacking will commence. Twenty ton bottle jacks and wood blocking will be utilized to manipulate the truss to the final camber. The bridge will be raised 1" between nodes 5 and 38. Then starting at node 10 we would raise it another inch to node 33. Then another inch between 15 and 28, and the final inch between nodes 20 and 23. The cambering process may take several days as the wood flexes into position. During this process we need to watch for lifting at other points other then what's intended. If the structure is lifting without cambering, bolts will need to be removed so the chords can slide and flex. In particular the supplemental bottom chords will most likely need to be removed as we will be fighting the through bolts and shear blocks to get the final camber. In any locations where lattice needs to be replaced the chord needs to be removed just to get at the trunnels.

Calculations are included for the loads induced on the shoring to install the camber. A sketch showing how the lateral bracing will be done with blocking and heavy duty ratchet straps is attached.

Piece Re-Placement

The Roof will be disassembled in sections of 50 feet or less. The bottom chords will be replaced followed by the lattice work followed by the top chords. We will work both sides in 50 foot sections or less putting the structure back together complete as we go along.

Once the bridge is rebuilt, it will be set back down on the abutments and covered for the coatings application. At this time the abutment and pier work will be done. Once the bridge is coated and set back on the piers and abutments the temporary cover and shoring removal will commence.

MEMO

DATE: December 11, 2015

TO: Renaud Brother Construction

FROM: Ronald K. Bell, PE

Bell Engineering

SUBJECT: Jacking Loads

One way to not overstress the trusses during jacking would be to limit the + camber in the W12x40 needle beams to 1/4". The unfactored load to induce a 1/4" camber is 23.123 kips on each side. I added 2.5 kips to the dead load of the truss to account for a force to overcome the inertia of the truss. Beyond a 1/4" camber you begin to exceed the allowable deflection of the beam. The camber can be checked by placing a straight edge under the needle beams between the longitudinal beams. Jacking should stop when the 1/4" camber occurs or you have lifted the truss approx. 1" at the needle beam. Proceed to the next jacking point when either condition occurs.

Thank you

Ron

Project Title: TOWNSHEND DAM COVERED BRIDGE **RON BELL** Project ID: 2015-055

Engineer: Project Descr: STP SCTT (1)

Printed: 11 DEC 2015, 11:29AM

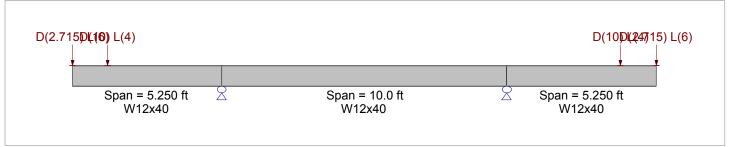
File = C:\Users\Ron\DOCUME~1\ENERCA~1\TOWNSE~1.EC6 Steel Beam ENERCALC, INC. 1983-2013, Build:6.13.8.31, Ver:6.13.12.31 Lic. #: KW-06009396 Licensee : Bell Engineering

W12x40 CROSS BEAM ALLOWABLE DEFLECTIONS

CODE REFERENCES

Calculations per AISC 360-05, IBC 2006, CBC 2007, ASCE 7-05

Load Combination Set: ASCE 7-05


Material Properties

Analysis Method: Load Resistance Factor Design

Beam Bracing: Completely Unbraced Bending Axis: Major Axis Bending

Load Combination ASCE 7-05

50.0 ksi Fy: Steel Yield: 29,000.0 ksi E: Modulus:

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loads

Load(s) for Span Number 1

Point Load: D = 2.715, L = 6.0 k @ 0.0 ft Point Load: D = 10.0, L = 4.0 k @ 1.250 ft

Load(s) for Span Number 3

Point Load: D = 10.0, L = 4.0 k @ 4.0 ft Point Load: D = 2.715, L = 6.0 k @ 5.250 ft

DESIGN SUMMARY

DESIGN SUMMARY			Design OK
Maximum Bending Stress Ratio	0.719:1	Maximum Shear Stress Ratio =	0.299 : 1
Section used for this span	W12x40	Section used for this span	W12x40
Mu : Applied	141.763 k-ft	Vu : Applied	31.509 k
Mn * Phi : Allowable	197.045 k-ft	Vn * Phi : Allowable	105.315 k
Load Combination	+1.20D+1.60L+0.50S+1.60H	Load Combination	+1.20D+1.60L+0.50S+1.60H
Location of maximum on span	10.000ft	Location of maximum on span	10.000 ft
Span # where maximum occurs	Span # 2	Span # where maximum occurs	Span # 2

Maximum Deflection

Max Downward L+Lr+S Deflection 0.323 in Ratio = 389 Max Upward L+Lr+S Deflection -0.118 in Ratio = 1,015 0.688 in Ratio = Max Downward Total Deflection 183 Max Upward Total Deflection -0.253 in Ratio = 473

Overall Maximum Deflections - Unfactored Loads

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
D+L	1	0.6885	0.000		0.0000	5.063
	2	0.0000	0.000	D+L	-0.2535	5.063
D+L	3	0.6855	5.250		0.0000	5.063

Vertical Reactions - Unfactored	Support notation : Far left is #1
vernical Reactions = Unitactoreo	Support Hotation . I at left is #1

	•				
Load Combination	Support 1	Support 2	Support 3	Support 4	
Overall MAXimum		23.123	23.123		
D Only		13.123	13.123		
L Only		10.000	10.000		
D+L		23.123	23.123		

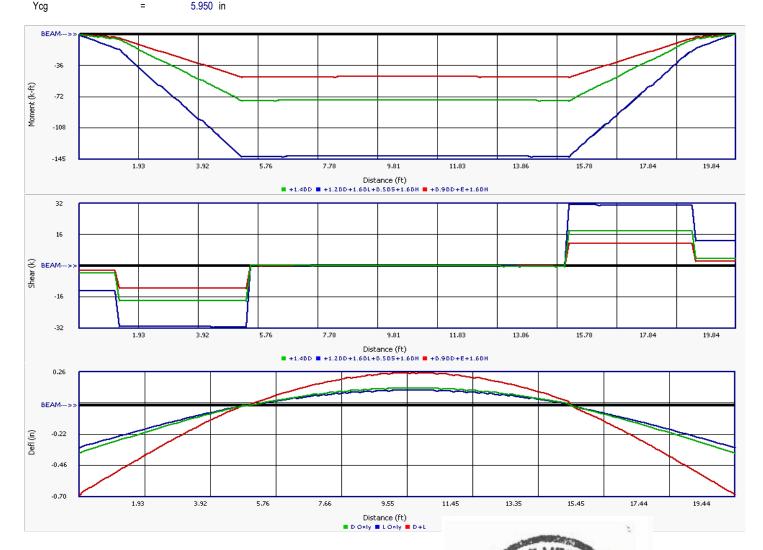
TOWNSHEND DAM COVERED BRIDGE RON BELL Project ID: Project Title: Project ID: 2015-055

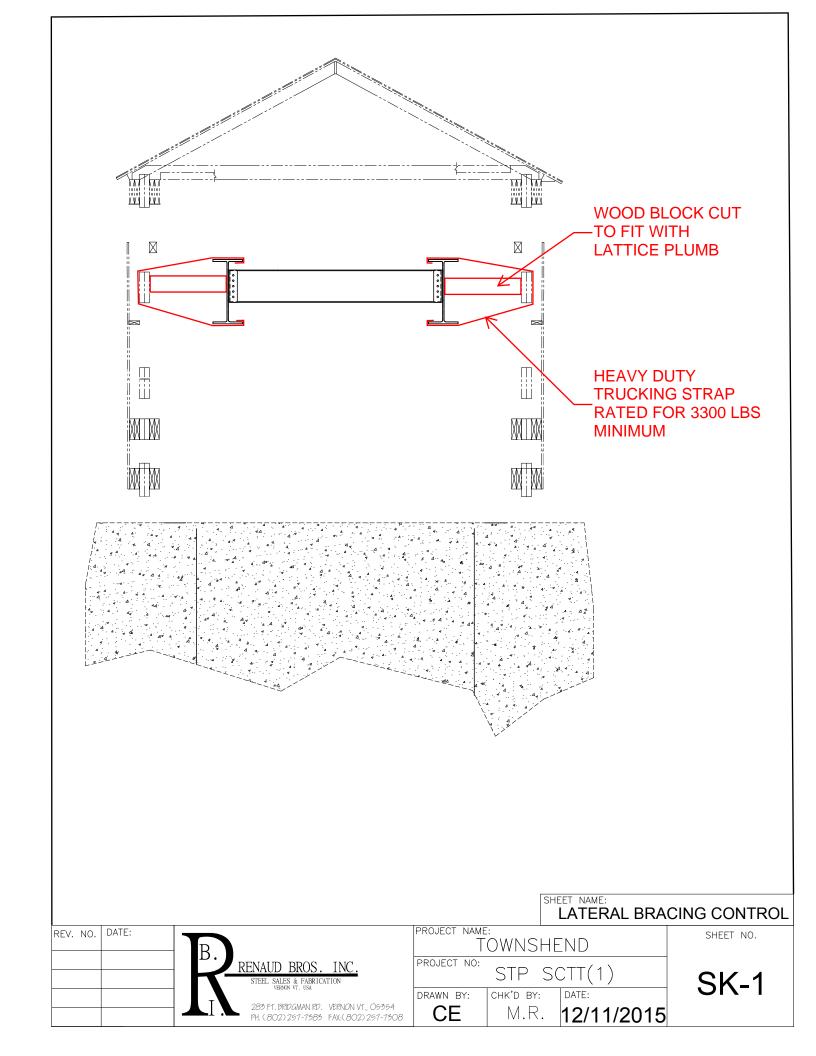
Engineer:

Project Descr: STP SCTT (1)

Printed: 11 DEC 2015, 11:29AM

Licensee : Bell Engineering


Steel Beam


Lic. #: KW-06009396

File = C:\Users\Ron\DOCUME~1\ENERCA~1\TOWNSE~1.EC6 ENERCALC, INC. 1983-2013, Build:6.13.8.31, Ver:6.13.12.31

W12x40 CROSS BEAM ALLOWABLE DEFLECTIONS

Steel Section F	Properties:	W12x40						
Depth	=	11.900 in	l xx	I	307.00 in^4	J	=	0.906 in^4
Web Thick	=	0.295 in	S xx		51.50 in^3	Cw	=	1,440.00 in^6
Flange Width	=	8.010 in	R xx	=	5.130 in			
Flange Thick	=	0.515 in	Zx	=	57.000 in^3			
Area	=	11.700 in^2	l yy	=	44.100 in^4			
Weight	=	39.827 plf	S yy	=	11.000 in^3	Wno	=	22.800 in^2
Kdesign	=	1.020 in	R yy	=	1.940 in	Sw	=	23.500 in^4
K1	=	0.875 in	Zy	=	16.800 in^3	Qf	=	11.300 in^3
rts	=	2.210 in	rT	=	2.140 in	Qw	=	27.800 in^3
Voa	_	5.050 in						

